Plusea

autodesk inventor lt 2017 autodesk autocad mechanical 2020 autodesk autocad mechanical 2021 autodesk 3ds max 2010 autodesk vault collaboration 2011
Just another WordPress weblog

+c
calendar
publications
contact
everything
in process
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004

walks

PLAYING TOGETHER
BECOMING MATERIAL
A WEARABLE STUDIO PRACTICE
ANATOMY OF A PIN
MAKING AS A MEANS OF EXPLORING
MAKE YOUR TECH AND WEAR IT TOO
MAKE TOOLS, NOT PARTS
TRACES WITH ORIGIN
ROOM FOR SPACE
COMMISSIONS

weeds

TEACHING
WRITING
KOBAKANT
How To Get What You Want
A Kit-of-No-Parts
Tools We Want
A Wearable Studio Practice
Swatch Exchange
mi.mu + dev blog
Mastodon
Flickr
YouTube
Riot
Instructables
GitHub
Diaspora

Sketches (3.9.2011) (2012)

Materials

This sketch shows some of the variations of pressure and location sensors made by layering conductive and piezo/resistive materials. Piezoresistive materials change electrical resistance under mechanical stress (pressure, bend, stretch…). When i refer to resistive materials, i normally mean materials that have increasing resistance over distance. While resistive materials don’t necessarily have piezoresistive properties, piezoresistive materials are normally also resistive. Most of the piezoresistive materials i’ve worked with are piezoresistive only in their z-axis (through the material) and not in their x/y-axis (across their surface). So i am hoping that it will be possible to use such a piezo/resistive material, to measure both change in pressure as well as location.

Conductive material: stretch conductive fabrics (silverized nylon, soft and safe…), conductive threads
Resistive materials: resistive thread from LessEMF, resistive yarn from Plug and Wear
Piezo/resistive materials: Velostat, Eeonyx fabrics
Spacer materials: perforated foam, loose woven fabrics, silicon dots…
Non-conductive/isolating materials: jersey fabric….

Resolution

While using a row and column grid/matrix structure within the layering to determine position can be very accurate, one accumulates a lot of contacts and resolution is limited by the number of contacts one is willing or able to include. Having a continuous, resistive surface or space-filling curve reduces the number of contacts to three or less. Because it is not made up of discrete points, resolution depends on reliably one can detect differences in distance.

Non-linearity

Most piezo/resistive materials are not linear in their resistive changes (distance/stress). Mapping the resistance values from the sensor skin to a model will definably also play a roll in how well the data appears.

Setup

Here is a sketch of the very basic setup and idea. The robotic arm (with two joints) which can bend and twist should be covered in a textile skin. The skin will most likely be a stretchy fabric tube that fits snugly over the robot arm. For simplicity of construction, the tube is folded rectangle, consisting of various layers of conductive, resistive, piezoresistive and isolating materials.
Data from the robot skin is sent to a computer application that visualizes sensor data.

Brainstorming




Plusea is proudly powered by WordPress